๋ณธ๋ฌธ ๋ฐ”๋กœ๊ฐ€๊ธฐ

์ถœ๋ ฅ์ธต1

์‹ ๊ฒฝ๋ง์˜ ๊ตฌ์กฐ – ์ž…๋ ฅ์ธต, ์€๋‹‰์ธต, ์ถœ๋ ฅ์ธต ์™„๋ฒฝ ์ดํ•ดํ•˜๊ธฐ ๋”ฅ๋Ÿฌ๋‹์„ ๊ณต๋ถ€ํ•˜๋‹ค ๋ณด๋ฉด ๊ฐ€์žฅ ๋จผ์ € ์ ‘ํ•˜๋Š” ๋‹จ์–ด๊ฐ€ ๋ฐ”๋กœ "์‹ ๊ฒฝ๋ง(Neural Network)"์ž…๋‹ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๊ทธ ๊ตฌ์กฐ๋ฅผ ์ดํ•ดํ•˜๋Š” ๋ฐ ์žˆ์–ด ๊ฐ€์žฅ ๊ธฐ๋ณธ์ด ๋˜๋Š” ๊ฐœ๋…์€ ๋ฐ”๋กœ **์ž…๋ ฅ์ธต, ์€๋‹‰์ธต, ์ถœ๋ ฅ์ธต**์ž…๋‹ˆ๋‹ค. ์‹ ๊ฒฝ๋ง์€ ๋‹จ์ˆœํ•œ ์„ ํ˜• ๋ชจ๋ธ๊ณผ ๋‹ฌ๋ฆฌ ์—ฌ๋Ÿฌ ๊ฐœ์˜ ๋…ธ๋“œ(Node)์™€ ์ธต(Layer)์œผ๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ์œผ๋ฉฐ, ๋ฐ์ดํ„ฐ๊ฐ€ ์ž…๋ ฅ์—์„œ ์ถœ๋ ฅ์œผ๋กœ ํ๋ฅด๋ฉด์„œ ์ ์  ๋” ๋ณต์žกํ•œ ํŒจํ„ด์„ ํ•™์Šตํ•ฉ๋‹ˆ๋‹ค. ์ด๋ฒˆ ๊ธ€์—์„œ๋Š” ์ธ๊ณต์‹ ๊ฒฝ๋ง์˜ ๊ธฐ๋ณธ ๊ตฌ์กฐ๋ฅผ ์ด๋ฃจ๋Š” ์„ธ ๊ฐ€์ง€ ์ธต์— ๋Œ€ํ•ด ์‰ฝ๊ณ  ๋ช…ํ™•ํ•˜๊ฒŒ ์ •๋ฆฌํ•ด๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.๐Ÿ“š ๋ชฉ์ฐจ1. ์‹ ๊ฒฝ๋ง์ด๋ž€ ๋ฌด์—‡์ธ๊ฐ€?2. ์ž…๋ ฅ์ธต(Input Layer)3. ์€๋‹‰์ธต(Hidden Layer)4. ์ถœ๋ ฅ์ธต(Output Layer)5. ์ธต ๊ตฌ์กฐ๊ฐ€ ์ค‘์š”ํ•œ ์ด์œ 6. ๋งˆ๋ฌด๋ฆฌ ์š”์•ฝ1. ์‹ ๊ฒฝ๋ง์ด๋ž€ ๋ฌด์—‡์ธ๊ฐ€?์‹ ๊ฒฝ๋ง(Neural Networ.. 2025. 4. 9.